Molecular Evidence in Identifying Parents of Garcinia mangostana L. Abdullah, N. A. P.1, Richards, A. J.2 and Wolff, K.2 ¹Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor D.E., Malaysia ²School of Biology, University of Newcastle Upon-Tyne, Tyne and Wear, Newcastle Upon-Tyne, NE1 7RU, UK *E-mail: nurashikin@putra.upm.edu.my #### **ABSTRACT** The obligate apomicts Garcinia mangostana L. (Clusiaceae) was described from Malaysia and hypothesized to have originated from the natural hybridization between G. malaccensis and G. hombroniana. One of the parents, i.e. G. malaccensis, was believed to be endemic in the state of Melaka. However, this was determined only through a comparison of their chromosome number and morphological characteristics. There is still the possibility of other species within the same section of G. mangotana as the possible parents. Thus, investigations were carried out using molecular markers from three different regions of the internal spacer, chloroplast and micorsatellite. The objective of this study was to identify the possible parents of G. mangostana by comparing its relationship to other species within the same section, based on the genetic analysis of the internal spacer, chloroplast and microsatellite regions. Meanwhile, comparisons of allele sizes between G. mangostana with G. malaccensis, G. opaca and G. hombroniana using six polymorphic primers which had previously been developed were also performed. For phylogenetic analysis ITS, trnL and accD-psaL primers were used to determine the relationships between the four Garcinia species in the Garcinia section with two other sections and the genus Clusia as an outgroup. From the genetic analysis, it was found that G. hombroniana shares no common allele with the other species, while G. opaca has similar allele sizes with G. mangostana and G. malaccensis. The phylogenetic tree also showed that the closest relative to G. mangostana is G. opaca and G. malaccensis. This proves that G. opaca is more likely to be the other parent of G. mangostana rather than G. hombroniana. Keywords: Chloroplast, phylogenetic, mangosteen, microsatellite ## INTRODUCTION The origin of the apomictic and totally female *Garcinia mangostana* has been suggested to be from Malaysia. Based on the records by Whitmore (1973), one of the determined parents, i.e. *Garcinia malaccensis*, was only found in the state of Melaka. *G. mangostana* might have arisen sexually from the hybridization of this particular species with any other species that is from the same taxonomic section, i.e. Section *Garcinia*. According to Richards (1990b), *G. mangostana* might be a hybrid between *G. hombroniana* and *G. malaccensis*. The former species is sometimes cultivated, but *G. malaccensis* is only known as a wild plant. Richards (1990b) believed that only a single apomictic female arose after a hybridization event between the facultative apomicts, and that ^{*}Corresponding Author no sexual reproduction subsequently came after that. Consequently, no males have been reported in this species, apart from the single male which was last reported by Idris and Rukayah (1987) in Peninsular Malaysia. Although the tree and flower which were reported by Idris and Rukayah (1987) possess similar morphological characteristics to female G. mangostana, the flower has numerous stamens with pollen grains. Nonetheless, it was uncertain that the male tree was a hybrid of G. hombroniana with G. malaccensis. The possibility of G. mangostana back-crossing to either one of the parents should therefore be considered. However, further studies were not possible as the tree is no longer available. Individuals in the genus Garcinia are able to reproduce via apomixis, regardless of whether they are facultatively or obligately apomictic. Without the existing hybrids having been recorded, and having the means to reproduce through obligate apomixis, all G. mangostana are considered as the components of a clone containing no genetic variation within or between populations. This generates a negative impact towards G. mangostana as one of the economically important fruit as it lacks a number of varieties or cultivars as compared to other commercial fruit such as durian and rambutan. Another drawback that made G. mangostana the least planted fruit tree among the local growers is that they have a long juvenile period which usually takes ten years for a G. mangostana tree to mature and to bear fruit. By identifying the parents of G. mangostana, hybridization could be carried out once again to produce and screen for progeny with favourable traits, especially one with a shorter juvenile period. As suggested by Richards (1990b), sexual reproduction might have occurred between the diploid G. hombroniana and diploid G. malaccensis to produce the tetraploid G. mangostana. This was concluded from chromosome number, where G. hombroniana was n=24 (2n=48), as reported by Richards (1990a), and the chromosome count for G. malaccensis reported by Ha (1988) was 2n=42-43. The chromosome counts for G. mangostana have been speculative, as there is only one study, i.e. by Ha (1988), which has reported the chromosome count of G. mangostana as 2n=?90. This would be logical if the parents were G. hombroniana and G. malaccensis. Richards (1990b) also compared the morphological characteristics of the three species which gave strong support to the theory that G. hombroniana and G. malaccensis are the parents. However, the researcher did not compare the chromosome counts to other possible species within the same Garcinia section which could lead to the possibility of other species as being the possible parents. These include G. penangiana and G. opaca which have strong phenotypic resemblance to G. hombroniana. Phylogenetic studies, based on the Internal Transcribed Spacer (ITS) sequences of the nuclear ribosomal regions carried out by Nazre (2007), showed that G. mangostana is closely related to G. hombroniana, G. malaccensis and G. opaca, indicating that all three species have the possibility of being one of the parents. The methods for parentage analysis include exclusion, categorical and fractional likelihood, and genotyping reconstruction (Jones & Ardren, 2003). Although these methods may be an ideal and convincing way to determine the parents of G. mangostana, screening for the incompatibilities between the parents and offspring will consume a long period of time, especially for a long juvenile period species like Garcinia spp. Phylogenetic analysis which has always been the method of choice for determining the relationships among the species. Two DNA regions are commonly associated with phylogenetics, i.e. the internal transcribed spacer (ITS) and chloroplast regions. The nucleotide sequence variations found in each of the ITS sequences were often best suited for comparing species and closely related genera (Saar & Polans, 2000; Soltis & Soltis, 1998). The internal transcribed spacer region and the intergenic spacer of the nuclear rRNA repeat units evolve the fastest and may vary among the species within a genus or among the populations (White et al., 1990) and are more suitable for comparison of closely related taxa (Baldwin, 1995). The chloroplast (cp) genome has been shown to be maternally inherited in the majority of angiosperms (Ennos et al., 1999; Palmer et al., 1988). According to Haruki et al. (1998), cpDNA markers have been successfully used for tracing the maternal parent in *Lilium* species. However, the cladistic analyses may not be able to completely resolve reticulate relationships and may not be useful for identifying hybrids or parental species (McCade, 1992). For most biological systems, the most powerful genetic tools for parentage analysis are the microsatellite markers (Jones & Ardren, 2003). The paternity of parentage analysis can be achieved by any type of genetic markers provided that it is sufficiently polymorphic, and for that reason, microsatellites are usually preferred (Gerber et al., 2000). Microsatellite markers proved to be a powerful tool to study the relationship of species, cultivars or varieties as they are inherited in a co-dominant Mendelian manner. The study was carried out to identify the possible parents of *G. mangostana* by comparing its relationship to other species within the same section based on the genetic analysis of the internal spacer, chloroplast and microsatellite regions. #### MATERIALS AND METHODS Four species from the section Garcinia, namely *G. mangostana, G. hombroniana, G. opaca* and *G. malaccensis*, were compared in the DNA fragment analysis and 11 other species were included for the phylogenetic analysis (Table 1). DNA was extracted from the leaf samples of 15 *Garcinia* species using Qiagen Plant Mini Kit and quantified by comparing it to two DNA ladders of 20µg and 40µg on 1.2% agarose gel. Microsatellite loci were isolated from *G*. TABLE 1 A list of *Garcinia* species examined and their sampling locations | No. | Botanical name | Taxonomic Section | Location of the samples | |-----|-----------------|-------------------|--------------------------------| | 1 | G. atroviridis | Brindonia | FRIM | | 2 | G. bancana | Brindonia | Pasoh Forest Reserve | | 3 | G. cowa | Brindonia | Pasoh Forest Reserve | | 4 | G. dulcis | Xanthochymus | Pasoh Forest Reserve | | 5 | G. grifithii | Brindonia | Pasoh Forest Reserve | | 6 | G. hombroniana | Garcinia | Rimba Ilmu, UM | | | | | FRIM, Kepong | | | | | Pangkor Island | | 7 | G. malaccensis | Garcinia | Pasoh Forest Reserve | | | | | Sg. Menyala Forest Reserve | | 8 | G. mangostana | Garcinia | UPM-Puchong Mangosteen Orchard | | | | | UPM- Farm 10 | | | | | Raub | | | | | Miri | | | | | Melaka | | 9 | G. nervosa | Xanthochymus | Pasoh Forest Reserve | | 10 | G. nigrolineata | Brindonia | Pasoh Forest Reserve | | 11 | G. opaca | Garcinia | Taman Negara Forest Reserve | | 12 | G. opacaE | Garcinia | Pasoh Forest Reserve | | 13 | G. opacaR | Garcinia | Pasoh Forest Reserve | | 14 | G. parvifolia | Brindonia | Pasoh Forest Reserve | | 15 | G. prainiana | Xanthochymus | UPM Puchong Mangosteen Orchard | | 16 | G. pyrifera | Xanthochymus | Pasoh Forest Reserve | | 17 | G. sp1 | Unknown | Pasoh Forest Reserve | mangostana and seven micosatellite primer pairs were developed following the hybridization and enrichment techniques (Edwards et al., 1996) to produce six polymorphic primer pairs which were later used for the fragment analysis (Table 2). The DNA fragments were amplified in 10µl reaction mix; 1X Taq Buffer (16mM (NH₄)₂SO₄, 67 mM Tris-HCL, 0.01% Tween-20), 2.0mM MgCl₂, 0.2mM dNTP each, 0.2µM of each of the microsatellite primer pairs, 0.33µM (F) dCTP, 0.5U Taq (Bioline) and 0.5µl template DNA. The primers were labelled with (F)dCTP dyes and the dyes used were R6G(dCTP) and R110(dCTP), visualised as 'green' and 'blue' peaks respectively on the ABI 310. The PCR was performed in a thermal cycler (PTC-100, MJ Research, Inc.) and it consisted of an initial denaturation of 12min at 95°C, followed by 20 cycles for 15s at 95°C, 15s at annealing temperature, and 15s at 72°C, 10 cycles for 15s at 89°C, 15s at annealing temperature, 15s at 72°C, with a final elongation of 30min at 72°C. Purification of the PCR products was carried out by mixing the PCR product with 1µl NaAc 3M (pH4.6) and 22µl 99% ethanol and precipitated at -20°C for 5min. Finally, 1µl of the fluorescently labelled reaction products were combined with 12µl deionised formamide and 0.5ul GeneScan ROX500 size standard. The mixture was heated three minutes at 95°C and transferred into ABI tubes, and fragment analysis was carried out on an ABI PRISM® 310 Genetic Analyzer. For the ITS and chloroplast DNA analysis, amplifications were carried out in 50µl reaction mixtures containing 1X PCR buffer, 2mM MgCl₂, 10µM dNTPs, 0.2pmol/ ul of each primer (Table 2), 1U taq polymerase and 5µl template DNA. PCR cycles were programmed on a PTC-100 DNA Engine (MJ Research, Inc.) following the protocol for each primer. The protocol for amplification with ITS/ trnL primers follows the protocol for ITS: 1 cycle TABLE 2 A list of the primers and their sequences | Primer | Sequence $(5' \rightarrow 3')$ | Source | |-----------|--------------------------------|-------------------------------| | GM1 | F: GAGCAATCCCAATGGCTAAA | * | | | R: CCGAGCTAAATGAATTGTGGA | * | | GM2 | F: TATGGAGCCTTTCGAGCCTA | * | | | R: CACCTCAGATTTAGGCCATCA | * | | GM5 | F: TGATGAGAAACATGCAGTTGA | * | | | R: TGATTCTGCAGCAT GGAAC | * | | GM8 | F: GTTTTGTCCCGGTTAAGTT | * | | | R: AAGGGTTTGCAATGAACAG | * | | GM10 | F: GGCAACTGCTCCAAGTTAG | * | | | R: TTTATCGGCCAAGTTATCG | * | | GM11 | F: TTGTGCTCTCTTCGCTCTT | * | | | R: ATGGCAGTTTATTGCTTGG | * | | ITS4 | TCCTCCGCTTATTGATATGC | White et al. (1990) | | ITS5 | GGAAGTAGAAGTCGTAACAAGG | White et al. (1990) | | trnL-c | CGAAATCGGTAGACGCTACG | Taberlet <i>et al.</i> (1991) | | trnL-d | GGGGATAGAGGGACTTGAAC | Taberlet <i>et al.</i> (1991) | | accD-769F | GGAAGT TTGAGCTTTATGCAAATGG | Small et al. (1998) | | psaL-75R | AGAAGCCATTGCAATTGCCGGAAA | Small et al. (1998) | ^{*} Primers developed from G. mangostana DNA region following Edwards et al. (1996) hybridization and enrichment techniques of initial denaturing at 94°C for 3min, 30 cycles of denaturing at 94°C for 10s, annealing at 55°C for 20s, elongation at 72°C for 1min and 30s and final elongation of 72°C for 4min. Amplification using the accD-psaL primer follows the same protocol with minor modification of 1 cycle of initial denaturing at 94°C for 5min, 30 cycles of denaturing at 94°C for 30s, annealing at 50°C for 30s, elongation at 72°C for 2min and final elongation of 72°C for 4min. Successful PCR amplification which produced a single DNA band was checked on 1.4% agarose gel. The amplified DNA was purified using the QIAGEN PCR purification kit and the DNA concentration of the purified PCR product was estimated on the gel by comparing it to a ladder of known concentration. Sequence reactions were carried out in both directions for each purified doublestranded PCR product using the Applied Biosystems Big Dye Terminator Ver. 1.1, buffer and primers. The sequence analysis was done on the ABI Prism 310 and the sequences were viewed and edited on Chromas Lite 2.0. The sequences were aligned by using ClustalX (vers. 1.8) and edited using ProSequence (Filatov 2002). The phylogenetic relationship analyses were conducted with PAUP, Version 4.0b (Swofford, 1999). The most parsimonious tree was obtained using the heuristic search option involving 100 replications of random addition sequence and tree bisection-reconnection (TBR) branch swapping. All characters were specified as equally weighted. The analyses were based on nucleotide substitutions; therefore, all gaps in the sequence were treated as missing data. Strict consensus and bootstrap analyses were conducted to assess the reliability of the tree. For bootstrap, 1000 replications were calculated using the heuristic search option with TBR branch swapping. Four to six closely related species of Clusia sp. were chosen as the outgroups (Table 3). # RESULTS AND DISCUSSION The parent of *G. mangostana* was determined by comparing the allele size for six microsatellite loci of three *Garcinia* species Garcinia species with support analysis using the ITS and chloroplast markers. G. mangostana DNA samples from five different locations were compared and the results showed that all five samples had the same allele size for each locus. This further confirmed that the G. mangostana plants are genetically similar and are possible clones. Since G. mangostana are obligate apomicts and without the existence of male tree for possible pollination and fertilization, all G. mangostana are believed to be carrying the same genetic constituents, and hence, having the exact allele size for each locus. Meanwhile, facultative apomicts, such as G. hombroniana and G. opaca, are able to propagate via apomixis and also through sexual reproduction. Thus, genetic variations among accessions and populations exist. In this study, three samples of G. hombroniana from three different locations showed differences in the allele sizes for three loci, i.e. GM8, GM10 and GM11 (Table 4). This was also observed in G. malaccensis as there were differences in the allele size from their samples taken from two different locations. This finding proved that there are some degree of genetic variations among the accessions of G. hombroniana, G. malaccensis and G. opaca. Five loci were heterozygous and one locus (GM2) was homozygous. Two of the primers were able to amplify four alleles per locus in tetraploid G. mangostana, namely GM8 and GM11. Table 4 shows that G. mangostana shares three similar sized alleles with G. malaccensis at locus GM1, GM2 and GM11, with the allele sizes of 235, 237bp, 210, 211bp, and 171,173 bp, respectively. When compared to G. opaca, G. mangsotana was found to share allele sizes at two loci, namely, GM5 (101bp) and GM11 (171, 173, 193,195bp). Sharing of similar allele sizes was also observed between G. malaccensis and G. opaca at loci GM10 (133,149bp) and GM11 (171,173bp). Meanwhile, sharing of alleles between G. mangostana and G. malaccensis, between G. mangostana and G. opaca, as well as between G. malaccensis with G. opaca directly linked the three species in a closely unique relationship. The similarity of allele sizes between G. mangostana and G. TABLE 3 A list of the *Clusia* species used as the outgroup for phylogenetics according to DNA region extracted from Genbank | Region | Clusia Species | Source | GenBank Accession number | |----------------------|----------------|--------------------------|--------------------------| | ITS | C. rosea | Gehrig et al. (2003) | AJ509230 | | | C. minor | Gehrig et al. (2003) | AJ509208 | | | C. major | Gustafsson et al. (2002) | AY145222 | | | C. ducu | Gustafsson et al. (2002) | AY145220 | | | C. lanceolata | Gustafsson et al. (2002) | AY145195 | | | C. multiflora | Vaasen et al. (2002) | AJ414719 | | trnL-trnF intergenic | C. rosea | Hale et al. (2004) | AY144094 | | spacer region | C. multiflora | Hale et al. (2004) | AY144091 | | | C. lanceolata | Hale et al. (2004) | AY144085 | | | C. minorA | Hale et al. (2004) | AY144087 | | | C. ducuA | Hale et al. (2004) | AY144076 | | accD and psaL genes | C. rosea | Hale et al. (2004) | AY144017 | | | C. multiflora | Hale et al. (2004) | AY144013 | | | C. lanceolata | Hale et al. (2004) | AY144007 | | | C. major | Hale et al. (2004) | AY144008 | malaccensis supports the idea that G. malaccensis is one of the parents of G. mangostana, as suspected by Richards (1990b). Interestingly, G. hombroniana shared no allele size with any of the three species. Instead, all the possible loci strongly suggested that G. hombroniana was not involved in contributing allele to G. mangostana. Although none of the allele sizes of G. malaccensis from the Pasoh population was similar to G. mangostana, this does not exclude G. malaccensis as one of the possible parents. The fact that G. malaccensis does not have the same reproductive system as G. mangostana and is facultatively apomicts, the occurrence of sexual reproduction within the population causes them to become more genetically diverse than G. mangostana, and thus, some individuals may not share the same alleles as G. mangostana. It seems that obtaining the right sample which matches the progeny is crucial. Therefore, it is essential to have a large sample size and to obtain the sex ratio of a population before sampling to recognize the pattern of apomixis or sexual reproduction in that population. To further support the idea that G. malaccensis and G. opaca are the possible parents for G. mangostana, phylogenetics analysis was carried out on both nuclear and chloroplast regions. Both the regions compare the mutation rate of nucleotides for G. mangostana in relation to G. hombroniana, G. malaccensis and G. opaca. Incorporating other species from various sections is generally required in phylogenetics to ensure accuracy of the phylogentic tree as well as to observe the relationships among the species from different sections. In this case, the genus Clusia was used as it was linked with close resemblance to Garcinia. The ITS sequences of Garcinia ranged from 640bp to 683bp, with an aligned length of 860bp. The phylogenetic analysis resulted in 1578 most-parsimonious trees of tree length (L) = 609, consistency index (CI) = 0.6470 $(CI_{uninformative} = 0.5928)$, retention index (RI) = 0.8184 and rescaled consistency index (RC) = 0.5295. Of 666 characters, a total of 225 (33.8%) characters were phylogenetically informative, Fragment analysis using six polymorphic primer pairs showing the allele sizes (bp) of four Garcinia species | yostana
roniana
ccensis | | | | | | Allele size at 5 loci | | | |--|----------------|-------------|---------|---------|---------|-----------------------|---------|-------------------| | UPM-Farm 10 235,237 210,211 101 UPM-Puchong 235,237 210,211 101 Raub 235,237 210,211 101 Melaka 235,237 210,211 101 A FRIM n/a 217,219 n/a UM n/a 217,219 n/a Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a 149 Pasoh n/a 149 Pasoh 101 101 | Species | ropulation | GM1 | GM2 | GM5 | GM8 | GM10 | GM11 | | UPM-Puchong 235,237 210,211 101 Raub 235,237 210,211 101 Melaka 235,237 210,211 101 FRIM n/a 217,219 n/a UM n/a 217,219 n/a Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a 149 Pasoh 173 212,214 101 | G. mangostana | UPM-Farm 10 | 235,237 | 210,211 | 101 | 233, 235, 242, 244 | 157,160 | 171,173, 193, 195 | | Raub 235,237 210,211 101 Miri 235,237 210,211 101 Melaka 235,237 210,211 101 a FRIM n/a 217,219 n/a UM n/a 217,219 n/a Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a n/a 149 Pasoh 213 212,214 101 | | UPM-Puchong | 235,237 | 210,211 | 101 | 233, 235, 242, 244 | 157,160 | 171,173, 193, 195 | | Miri 235,237 210,211 101 Melaka 235,237 210,211 101 FRIM n/a 217,219 n/a UM n/a 217,219 n/a Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a n/a 149 Pasoh 213 212,214 101 | | Raub | 235,237 | 210,211 | 101 | 233, 235, 242, 244 | 157,160 | 171,173, 193, 195 | | Melaka 235,237 210,211 101 A FRIM n/a 217,219 n/a UM n/a 217,219 n/a Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a n/a 149 Pasoh 213 212,214 101 | | Miri | 235,237 | 210,211 | 101 | 233, 235, 242, 244 | 157,160 | 171,173, 193, 195 | | a FRIM n/a 217,219 n/a UM n/a 217,219 n/a Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a 149 Pasoh 213 212,214 101 | | Melaka | 235,237 | 210,211 | 101 | 233, 235, 242, 244 | 157,160 | 171,173, 193, 195 | | UM n/a 217,219 n/a Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a 149 Pasoh 213 212,214 101 | G. hombroniana | FRIM | n/a | 217,219 | n/a | 209,209 | 313 | 183,183 | | Pangkor n/a 217,219 208 Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a n/a 149 Pasoh 213 212,214 101 | | UM | n/a | 217,219 | n/a | 207,209 | 314 | 181,183 | | Pasoh n/a 204 107,111 Sg. Menyala 235,237 210,211 n/a Rompin n/a n/a 149 Pasoh 213 212,214 101 | | Pangkor | n/a | 217,219 | 208 | 207,209 | 313 | 183,183 | | Sg. Menyala 235,237 210,211 n/a Rompin n/a n/a 149 Pasoh 213 212,214 101 | G. malaccensis | Pasoh | n/a | 204 | 107,111 | 221 | 133,149 | 171,173 | | Rompin n/a n/a 149 Pasoh 213 212,214 101 | | Sg. Menyala | 235,237 | 210,211 | n/a | 231 | 162 | 171,173, 193, 195 | | 213 212,214 101 | G. opaca | Rompin | n/a | n/a | 149 | n/a | 133,149 | n/a | | | | Pasoh | 213 | 212,214 | 101 | 221 | 133,149 | 171,173, 193, 195 | n/a – no amplification 71 variable characters are parsimonyuninformative and 370 (55.5%) characters were constant. The phylogenetic tree shown in Fig. 1 indicates that all the Garcinia species were clustered accordingly to their respective section and the genus *Clusia* was the outgroup. The ITS data support three clades within Garcinia, with G. bancana not included in any one of them. Clade 1 (C1) contains the species from the section Xanthochymus, in clade 2 (C2) are the species from the section *Garcinia*, and clade 3 (C3) contains the species from section *Brindonia*. During leaf sampling in the Pasoh Forest Reserve, one tree was recorded as G. eugeniaefolia and eight trees were as G. rostrata. Both these species are from the section Discostigma (Jones, 1980). From the observations of leaf and flower morphologies, it was suggested that "G. eugeniaefolia" and "G. rostrata" are both of the same species with G. opaca (Nazre, pers.com). The BLAST inquiry from Genbank on the sequences of our collection, labelled as "G. eugeniaefolia" and "G. rostrata", was performed and shown as similar to G. opaca var *minor* with the E value of zero and the scores of 1106. The phylogram based on ITS sequences showed that "G. eugeniaefolia" designated as G. opacaE and "G. rostrata" designated as G. opacaR were in the same clade as G. opaca which is in section Garcinia. The results from the BLAST inquiry for G. sp1 showed a high similarity to G. bancana. Based on the phylogram illustrated in Fig. 1, G. sp1 is in the same clade as the species from section Brindonia, suggesting that G. sp1 is most probably G. bancana. Section Garcinia, which includes G. mangostana, G. malaccensis, G. opaca and G. hombroniana, showed that the number of changes in the branch length between G. mangostana with G. malaccensis, G. opaca, G. opacaE, G. opacaR and G. hombroniana was 19,17,9,5 and 21, respectively. This suggests that the closest species to G. mangostana are G. opaca and G. malaccensis. This also suggests that G. opaca and G. malaccensis are more likely to be the parents of G. mangostana than G. hombroniana, as suggested by Richards (1990b). The aligned trnL sequences were 707bp in length with the sequences varying from 640bp to 683bp. The phylogenetic analysis resulted in 1083 mostparsimonious trees of tree length (L) = 547, consistency index (CI) = 0.6216 (CI_{uninformative} = 0.5651), retention index (RI) = 0.7214 and rescaled consistency index (RC) = 0.4484. One of the parsimonious trees is shown in Fig. 2. Of 671 characters, a total of 204 (30.4%) characters are phylogenetically informative, 62 (9.2%) variable characters are parsimony-uninformative and 405 (60.3%) characters are constant. Three major clades, which were recognized (C1-C4) with G. atroviridis and G. bancana, were not included in their expected group (Fig. 2). Clade 1 was section Brindonia, clade 2 section Xanthochymus and clade 3 section Garcinia. All the species in each clade otherwise agrees with Jones' (1980) classifications. The chloroplast data, like the previous ITS analyses, support that G. opaca and G. malaccensis is the closest sister to G. mangostana. The trnL chloroplast region of Garcinia contains mononucleotide repeats of the A nucleotide. The length of repeats ranged from 10 - 16 repeats at 113 - 132bp long. However, primers trnL-C and trnL-D were unable to amplify the DNA sample of G. opaca. It is important to note that the sequences used for this analysis might have been unreliable. This is because of the long A nucleotide repeats and the alignments of the sequences containing large gaps, notably from 387-480bp. Therefore, the phlygenetics analysis relies heavily on the other chloroplast region, i.e. the accD-psaL region. The length of accD-psaL DNA sequence ranged from 698bp to 753bp, with an aligned length of 798bp. The heuristic search yielded 401 trees length (L) =240, consistency index (CI) = 0.6125, homoplasy index (HI) = 0.3875, $(CI_{uniformative} = 0.4716)$, rescaled consistency index (RC) = 0.3882 and retention index (RI) = 0.6339. The phylogram can be divided into three clades (C1, C2 and C3) as shown in Fig. 3, and from the bootstrap analysis (Fig. 4), the monophyly of the ingroup was 100% supported. Of 681 characters, a total of 70 (10.3%) characters are phylogenetically informative, 61 (8.9%) variable characters are parsimony-unifnformative and 550 characters are constant. Clade 1 (76% Fig. 1: One of most parsimonious trees based on the ITS sequence data from 15 species of Garcinia. Figures are tree length based on the numbers of DNA substitution changes. Key: O-Clusia outgroup Xn-Section Xanthochymus Gr-Section Garcinia Br-Section Brindonia Ds-Section Discostigma Fig.2: One of the most parsimonious trees based on the trnL sequence data from 17 species of Garcinia. Figures are tree length based on numbers of DNA substitution changes. Key: O-Clusia outgroup Xn-Section Xanthochymus Gr-Section Garcinia Br-Section Brindonia Molecular Evidence in Identifying Parents of Garcinia mangostana L. Fig. 3: One of the most parsimonious trees based on the accD-psaL sequence data from 14 species of Garcinia. Figures are tree length based on the numbers of DNA substitution changes. Key: O-Clusia outgroup Xn-Section Xanthochymus Gr-Section Garcinia Br-Section Brindonia bootstrap supported) consists of the species from *Garcinia* section, clade 2 (85% BS supported) is from *Brindonia* section and clade 3 (52% bootstrap supported) is *Xanthochymus* section (*Fig. 3*). In the ITS phylogenetic analysis, *G. bancana* was slightly out of the *Brindonia* section, with 57 nucleotide changes from the main clade and in the trnL region; it is in the same clade with the rest of the members of the Brindonia section but the change of nucleotides was 53, showing that it has distant genetic relationships. In the accD-psaL region, however, Fig. 4: Bootstrap support (50%) for various nodes (1000 replicates) with the values of more than 78%, based on accD-psaL region. Key: O-Clusia outgroup Xn-Section Xanthochymus Gr-Section Garcinia Br-Section Brindonia the changes of nucleotides are only 15 compared to G. atroviridis, and this agrees with Jones' (1980) Garcinia classification. The number of changes in the branch length between G. mangostana with G. malaccensis, G. opaca, G. opacaE, G. opacaR and G. hombroniana was 10, 8, 11, 5, and 12, respectively. The accD-psaL chloroplast region of Garcinia contains mononucleotide repeats of the A nucleotide but the length of the repeats was shorter than the ones in the trnL chloroplast region. The mononucleotides were at 460-470bp with 9-12 repeats. Meanwhile, the primers were able to amplify G. opaca DNA but not Garcinia sp.1. The number of nucleotide changes was more in the ITS region compared to the trnL, accD and psaL regions. This is typical as the rate of mutation in the internal transcribe spacer regions is much faster than that in the conserved chloroplast regions. Nevertheless, all the three regions showed similar results, whereby G. mangostana was found to be more closely related to G. malaccensis and G. opaca rather than to G. hombroniana. # **CONCLUSIONS** The three molecular markers proved that G. hombroniana, which has previously been suggested as being one of the parents for G. mangostana, is unlikely to be so. The samples from three different geographical locations of G. hombroniana showed no similar sized microsatellite alleles to G. mangostana and G. malaccensis. On the other hand, G. opaca which was shown by three phylogenetic tree generated from the sequence of the ITS, trnL and accD-psaL regions showed close relationships to G. mangostana and G. malaccensis. G. opaca also shared similar sized alleles to the two species. In all the phylogenetic analyses, G. hombroniana has a distant relationship with G. mangostana compared to G. malaccensis and G. opaca. This strongly suggests that one of the parents for G. mangostana is G. malaccensis and another possible parent is G. opaca, but not G. hombroniana. ### REFERENCES - Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The its Region of Nuclear Ribosomal DNA: A Valuable Source of Evidence on Angiosperm Phylogeny. *Annals of the Missouri Botanical Garden*, 82(2), 247-277. - Edwards, K. J., Barker, J. H. A., Daly, A., Jones, C., & Karp, A. (1996). Microsatellites libraries enriched for several microsatellites sequences in plants. *BioTechniques*, *20*, 758-760. - Ennos, R. A. (1999). Using organelle markers to elucidate the history, ecology and evolution of plant populations. In M. Hollingsworth *et al.* (Eds.). *Molecular Systematics and Plant Evolution* (p.1-19). United Kingdom: Taylor and Francis. - Gehrig, H. H., Aranda, J., Cushman, M. A., Virgo, A., Cushman, J. C., Hammel, B. E., & Winter, K. (2003). Cladogram of Panamanian *Clusia* based on nuclear DNA: implications for the origin of crassulacean acid metabolism. *Plant Bioliogy*, 5, 59-70. - Gerber, S., Mariette, S., Strieiff, R., Bodenes, C., & Kremer, A. (2000). Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. *Molecular Ecology, 9*, 1037-1048. - Gustafsson, M. H. G., Bittrich, B., & Stevens, P. F. (2002) Phylogeny of Clusiaceae based on *RBCL* sequences. *International Journal of Plant Science*, *163*, 1045-1054. - Ha, C. O., Sands, V. E., Soepadmo, E., & Jong, K. (1988). Reproductive patterns of selected understorey trees in the Malaysian rain forest: the apomictic species. *Botanical Journal of the Linnean Society*, 97, 317-331. - Hale, M. L., Borland, A. M., Gustafsson, M. H. G., & Wolff, K. (2004). Causes in size homoplasy among chloroplast microsatellites in closely related *Clusia* species. *Journal of Molecular Evolution*, 58, 182-190. - Haruki, K., Hasoki, T., & Nako, Y. (1998). Tracing the parentages of some oriental hybrid lily cultivars by PCR-RLFP analysis. *Journal of Japan Society Horticultural Science*, 67, 352-359. - Idris, S., & Rukayah, A. (1987). Description of the male mangosteen (Garcinia mangostana 1.) discovered in Peninsular Malaysia. MARDI Research Bulletin, 15, 63-66. - Jones, A. G., & Ardren, W. R. (2003). Methods of parentage analysis in natural populations. *Molecular Ecology*, *12*, 2511-2523. - McCade, L. A. (1992). Hybrids and phylogenetic systematic II. The impact of hybrids on cladistic analyses. *Evolution*, 46, 1329-1346. - Nazre, M., Clyde, M. M., & Latiff, A. (2007). Phylogenetics relationships of locally cultivated Garcinia species with some wild relatives. *Malaysian Applied Biology*, 36, 31-40. - Palmer, D. P., Jansen, R. K., Micheals, H.J., Chase, M. W., & Manhart, J. R. (1988). Chloroplast DNA variation and plant phylogeny. *Annual Missouri Botanical Garden*, 75, 1180-1206. - Richards, A. J. (1990a). Studies in *Garcinia*, Dioecious Tropical Forest Trees: Agamospermy. *Botanical Journal of the Linnean Society*, 103, 233-250. - Richards, A. J. (1990b). Studies in *Garcinia*, Dioecious Tropical Forest Trees: The Origin of the Mangosteen (*G. mangostana* L.). *Botanical Journal of the Linnean Society, 103*, 301-308. - Saar, D. E., & Polans, N. O. (2000). ITS sequence variation in selected taxa of Pisum. *Pisum Genetics*, 32, 42-45. - Small, R. L., Ryburn, J. A., Cronn, R. C., Seelanan, T., & Wendel, J. F. (1998). The tortoise and the hare: choosing between non-coding plastome and nuclear ADH sequences for phylogeny reconstruction in a recently diverged plant group. *American Journal of Botany*, 85, 1301-1315. - Soltis, D. E., & Soltis, P. S. (1998). Choosing and approach an appropriate gene for phylogenetic analysis. In Soltis *et al.* (Eds). *Molecular Systematics of Plants II: DNA sequencing* (p.1-42). Boston: Kluwer Academic Publishing. - Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology*, *17*, 1105-1109. - White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis et al. (Eds.), PCR Protocols: A Guide to Methods and Applications (p. 315–322). San Diego: Academic Press. - Vaasen, A., Begerow, D., Lüttge, U., and Hampp, R. (2002). The genus *Clusia* L.: molecular evidence for independent evolution of photosynthetic flexibility. *Plant Biology*, 4, 86-93. - Whitmore, T. C. (1973). *Tree Flora of Malaya, Vol. 2*. Kuala Lumpur: Department of Forestry.